Cardiovascular, Respiratory and Digestive Functions (MED1207)

Year 1 Semester 2

Credits: 7

Responsible Department: Department of Physiology

Module Coordinator: Prof Sudheera Kalupahana

Topic/Concept	Objectives	Time (hours)	T/L activity	Comments
1. Heart as a pump	1. Discuss special structural, contractile and electrical aspects of cardiac	2hrs	Lectures	
1.1 Properties of cardiac muscle, conduction system, cardiac cycle.	muscle in contrast to smooth and skeletal muscle.2 Describe the conducting system of the	1hr	Lectures	
ECG	a. Describe the origin and spread of the cardiac impulse		20000105	
	 4. Describe the events and explain the pressure and volume changes in the cardiac cycle. 	2hrs	Lectures	
	5. Explain how normal heart sounds are produced and their timing in relation to the cardiac cycle.6. Explain the principles of Electrocardiography.	2hrs	Lectures	
		2hrs	SGD	

1.2 Changes in cardiac rate & rhythm	 Explain the physiological basis of Arrhythmias. Describe Re-entry phenomenon. Identify sinus tachycardia and bradycardia on an ECG strip. Calculate heart rate on an ECG strip with regular and irregular rhythm. 	2hrs	Lecture	Practical on arrhythmias to be done with the practical on normal ECG
1.3 Valvular defects and murmurs	1. Explain how abnormal heart sounds are produced and their timing in relation to the cardiac cycle	1hr	Lecture	
1.4 Electrocardiography	 Draw and identify the wave forms of a typical ECG. Describe variations in the ECG in health & disease. Calculate heart rate in normal and abnormal ECGs. Identify basic arrhythmias. 	3hrs	Practical	
2.Cardiac output and venous return	 Explain the terms cardiac output, stroke volume, end-diastolic volume and end- systolic volume. Explain Starling's law of the heart. Explain the term venous return, its relationship to stroke volume and discuss factors affecting it. Explain the role of nervous system, hormones and body temperature in the control of cardiac function. Explain how cardiac output is regulated. 	2hrs 2 hrs	Lecture SGD	
3.Flow dynamics 3.1 Blood flow through the vascular tree	 State the factors affecting blood flow. Explain the term peripheral resistance. Explain the nervous, mechanical, hormonal and local factors (endothelial) affecting peripheral resistance. Explain the causation of arterial and venous pulsations with venous pressure waves. 	2hrs	Lecture	

3.2 Examination of arterial and venous pulses	 5. Define pre-load and after-load. 6. Describe microcirculation with special reference to the structure of a typical capillary bed, pre and post- capillary sphincters, metarterioles, endarteries. i. Explain the basis of examination of the arterial and venous pulses. 	3hrs		
	ii. Examine arterial pulses at different sites. iii. Examine venous pulses.			
4.Blood pressure 4.1 Blood pressure and its regulation	 Explain the terms systolic, diastolic, mean arterial and pulse pressure and their relationship to each other. Describe the relationship between peripheral resistance, cardiac output and blood pressure. Explain the mechanisms of short-term and long-term regulation of blood pressure 	2 hrs 2 hrs	Lecture SGD	
4.2 Measurement of blood pressure	 Explain the basis of blood pressure measurement. Measure systolic and diastolic blood pressure. 	3 hrs	Practical	

5.Tissue fluids 6.Cardiovascular system examination	 Explain the process of tissue fluid formation in terms of Starling forces. Discuss the factors causing oedema giving examples, and their clinical importance. Explain the basis of examination of the cardiovascular system. Perform a complete cardiovascular examination. 	2 hrs 3 hrs	Lecture	
7.Circulation through special regions	 Explain the special features of the following regional circulations with respect to their functions: a. Skin b. Splanchnic c. Renal d. Cerebral e. Muscle f. Coronary 	3hrs	Lecture	
8.Hypovolaemia and shock	 Explain the physiological changes and compensatory mechanisms that occur in the cardiovascular system in varying degrees of blood loss. Explain the changes that occur in all body systems in different types of shock. Describe the neural, hormonal and metabolic responses to shock 	2 hrs	Lecture	

9.Dehydration	 Explain the regulatory mechanisms which maintain extracellular fluid (ECF) volume and osmolarity. Explain the basis of different forms of dehydration 	1hr	Lecture	
Roundup session	1. Discuss the physiological basis of oedema, dehydration and hypovolaemia	2 hrs	SGD	
10.1Mechanics of Breathing	 Explain the role of atmospheric pressure, alveolar pressure and airway resistance in determining airflow in and out of the lungs. Explain the role of elastic recoil of the lungs and the chest wall in breathing. Describe the sequence of events which occur during normal and forced expiration. Define the terms alveolar pressure, intrapleural pressure and transpulmonary pressure and state their magnitude at the end of a quiet respiration. Define and explain the following terms: anatomic dead space, physiologic dead space, wasted (dead space) ventilation, total minute ventilation and alveolar minute ventilation. Explain the term lung compliance and describe the factors affecting compliance. Draw a normal pulmonary pressure- volume (compliance) curve. Describe the role of surfactant in maintaining alveolar surface tension. 	3hrs	Lecture	

	 Explain the factors controlling airway resistance. Define the following terms: Dynamic lung compliance, static lung compliance, closing volume and closing capacity. Describe how airway resistance alters dynamic lung compliance. Define the different lung volumes, capacities and flow rates. Describe the mechanisms responsible for the changes in the above volumes, capacities and flow rates in obstructive and restrictive lung diseases. 			
10.2 Assessment of Lung Function	 Describe the basis of measuring lung volumes using spirometry. Explain the terms tidal volume, expiratory reserve volume, inspiratory reserve volume, vital capacity, functional residual capacity, total lung capacity, residual volume, forced vital capacity, FEV1, peak 	3 hrs	Practical	
	 expiratory flow rate, Vmax50 and Vmax25. 4. Perform peak flow rate measurements. 5. Identify nomograms and determine lung volumes and capacities using nomograms. 7. Differentiate between restrictive and obstructive lung diseases using the spirogram. 			

11 Company diff.	1 Define the terms (in subil mass " 1	2.1	Tester	
11.Gas exchange, diffusion	1. Define the terms partial pressure and	3 nrs	Lecture	
of gases, and perfusion in	"tractional concentration".			
the lung	2. List the normal fractional concentrations			
	and sea level partial pressures for O_2 , CO_2 ,			
	and N_2 .			
	3. Explain O_2 and CO_2 composition of			
	alveolar gases.			
	4. State the alveolar and blood gas pressures			
	and discuss the factors that determine	2 hrs	SGD	
	alveolar gas pressure.			
	5. Describe the process of gas exchange at			
	the lungs in terms of the respiratory			
	membrane, factors affecting gas exchange,			
	role of diffusion and diffusing capacity.			
	6. Explain the oxygen cascade			
	7. Describe the functional anatomy,			
	pulmonary vascular pressures and			
	capillary dynamics of the pulmonary			
	circulation.			
	8 Describe the regional differences in			
	pulmonary blood flow in an upright			
	person Define zones I II and III in the			
	lung with respect to pulmonary vascular			
	nressure and alveolar pressure			
	9 Describe the consequence of hypoxic			
	pulmonary vasoconstriction on the			
	distribution of pulmonary blood flow			
	10 Define the term "ventilation-perfusion			
	(V/O) ratio" and explain how it is			
	affected by the vertical distribution of			
	ventilation and perfusion in the healthy			
	hing			
	11 Explain the term V/Ω mismatch			
	12 Explain the term RO (reconstance)			
	quotient)			
	quotiont).			

12.Transport of Respiratory Gases	 Explain the relationship between PO₂ and dissolved plasma O₂ content (Henry's Law). Describe the oxygen-Haemoglobin dissociation curve and explain how the curve shifts under different conditions. Explain Bohr and Haldane effects. Explain oxygen carrying capacity and oxygen delivery to tissues. 	2 hrs	Lecture	
13.Hypoxia	 List the different types of hypoxia. Explain the causes and basis for the clinical features and treatment of different types of hypoxia. 	1hr	Lecture	
14.Regulation of Respiration	 Describe the regions in the CNS that play important roles in the generation and control of cyclic breathing. Explain the factors affecting rate and rhythm of respiration. Describe the reflexes involving pulmonary receptors that influence breathing frequency and tidal volume. Explain the role of peripheral and central chemoreceptors in the control of ventilation. Describe how changes in arterial PO₂ and PCO₂ alter alveolar ventilation, including the synergistic effects when PO₂ and PCO₂ both change. Explain the changes in respiratory drive when oxygen is given to a COPD patient. 	1hr	Lecture	

15.Non-respiratory functions of the respiratory system	 Describe the defense mechanisms in the lungs and upper airways including mucociliary clearance, cough, sneezing and alveolar macrophages. Describe the role of the upper airways in warming and humidifying inspired air. Describe other functions of the respiratory system (e.g. metabolic and olfactory functions, phonation). 	1hr	Lecture	
16.Role of respiration in acid base balance	 Define the terms 'acid', 'base' and explain the "Henderson Hasslebach equation". Explain the different buffer systems in the body. Explain the role of respiration in acid-base balance. 	1hr	Lecture	
17.Respiration in special circumstances a. Exercise	 Explain the changes in the following parameters during aerobic and anaerobic exercise: Cardiac output, Blood pressure, Pulmonary vascular resistance, skeletal muscle blood flow. Explain the local regulation of blood flow and the role of capillary reserve in altering skeletal muscle blood flow. Define VO_{2MAX} and identify factors affecting it Describe the significance of the feed forward control of ventilation (central command) during exercise and the 	2 hrs 2 hrs 3hrs	Lecture SGD Practical	Combined SGD for regulation, exercise, high altitude and diving Practical: muscular exercise + physical fitness

	 venous PCO₂, PO₂, and pH. 6. Define the effects of training on the heart, coronary circulation and skeletal muscle and how these changes contribute to an increase in VO_{2MAX}. 7. Explain how each of the following can affect exercise performance: muscle fatigue, VO_{2MAX}, anaerobic threshold, gender, and age.
b. Acclimatization to high altitude	 Explain the changes in PO₂ in inspired air with increasing altitude. State the altitude at which acute effects of hypoxia are felt. Describe the acute effects of hypoxia. Explain the mechanisms of changes in the following parameters in acclimatization to high altitude: pulmonary ventilation RBC count and Hb diffusing capacity tissue vascularity tissue vascularity tissue utilization of oxygen State the anthropometric and physiological changes that are seen in natural acclimatization (adaptation) of those individuals native to high altitudes.
c. Deep-sea diving	 Describe the physiological changes that occur during deep-sea diving. Describe the effects of hyperbaric N₂ narcosis.

18.Heart failure	1. Explain the haemodynamics and the basis of clinical features in right and left heart failure.	2hrs	Lecture	
19.Cardiac Murmurs and shunts	1. Explain the haemodynamic changes that take place with valvular problems and septal defects of the heart.	1hr	Lecture	
20.Respiratory insufficiencies	 Explain the physiological derangement in restrictive and obstructive respiratory diseases. Explain the basis of type 1 and type 2 respiratory failures. 	1hr	Lecture	
Roundup Session	1. Discuss the physiological basis of cardio- respiratory derangements	2hrs	SGD	
21.Clinical examination of the respiratory system	 Perform a physical examination of the respiratory system. 	3hrs	Practical	
22.Tests of Cardiovascular Autonomic functions	 Explain the basis of the tests of autonomic function. Describe the Valsalva manoeuvre, the changes in physiological parameters and the basis for those changes. Perform the following tests of autonomic function: Valsalva manoeuvre Deep breathing test Test for orthostatic hypotension 	1hr 3hrs	lecture Practical	
23. Basic life support	 Explain the importance of the Basic Life Support (BLS). Perform BLS. 	1hr 3hrs	Lecture Practical	With Dept of Anaesthesia
24. Mastication, saliva and taste	 Describe the functional anatomy of the tongue and taste buds. Describe the role of mastication in digestion. 	1 hr	Lecture	

	 State the importance of saliva in digestion, its composition, how the ionic composition is modified by passage through the ducts. Explain the factors concerned in the regulation of salivary secretion. Describe the conditioned reflexes involved in salivary secretion. Explain the role of saliva in oral hygiene. 			
25. Swallowing	 Describe the three stages of swallowing in terms of mechanics and nervous control. Describe the nervous control, mechanics and function of the lower oesophageal sphincter (LOS). 	1 hr 2 hrs	Lecture SGD	SGD to cover saliva, mastication and swallowing
26. General organization of the alimentary canal to perform its function	 Describe the electrical and contractile properties of gastrointestinal smooth muscle. Explain the neural control of gastrointestinal function. 	1 hr	Lecture	
27. Stomach and gastric secretion	 Describe a typical oxyntic gland and list the secretions from each type of cell in the gland. Explain the role of each of the secretions in digestion and absorption. Explain the mechanism of secretion of HCl from the parietal cell. Explain the nervous, hormonal and chemical regulation of gastric secretion. Explain the role of gastric secretion in the aetiology of peptic ulcer. 	1 hr 2 hrs	Lecture SGD	
28. Gastric emptying	 Describe the motor functions of the stomach including gastric emptying. Describe the factors that determine gastric emptying. 	1hr	Lecture	
29. Secretory processes in the small intestine	 Describe the secretary functions of the duodenum, jejunum, ileum, pancreas and gall bladder. Describe the neuronal and hormonal control of the above secretions. 	2hrs 2 hrs	Lecture SGD	

30. Colonic movements and functions of the large intestine	 Describe the movements of the colon including the rectum. Describe the absorptive and synthetic functions of the colon. 	1 hr	Lecture	
31.Defaecation	 Describe the structures and neural pathways which are important in maintaining the defaecation reflex. Describe the sequence of events leading to defaecation. 			
32. Dysfunctions of GIT motility	 Explain the mechanism of vomiting, including the location and connections of the vomiting center and the role of the chemoreceptor trigger zone. Describe the basis of common GIT disorders (vomiting, reflux, achalasia, diarrhoea) 	2 (1+1) hrs	Lecture	Objective 2 – Done by a clinician
33. Physiology of jaundice	 List the types of jaundice. Explain the basis for clinical features and investigation findings in different types of jaundice. 	2 hrs	Lecture	